Skip navigation

Daily Archives: August 11th, 2009

About two weeks ago the asynchronous location bar work landed in mozilla-central without much issue. It’s also in the Firefox 3.6 alpha we just recently released. This has the potential to impact all of our users, but those on slower hard drives will notice this the most. Your location bar searches may not complete any faster than before, but they certainly won’t be hanging your browser and locking up the UI.

Background

We’ve been getting reports for some time about the location bar hanging the application for some users when they are typing in it. This wasn’t a problem that was reproducible on every machine, and even on machines that saw it, it wasn’t always 100% reproducible. Clearly, this behavior is not desirable, so we set out to fix it.

I had a theory to the cause almost a year ago and filed a bug that I was hoping we could work on and fix for Firefox 3.5. We knew that reading data off a disk can be slow (and certainly would complete in a non-deterministic amount of time). Since SQLite uses blocking read calls (no more code can execute until the data is read from disk), this could certainly be the cause of the slowdown our users were seeing. Some simple profiling showed that this was largely the cause of the hanging. Work began on the project, but it was clear that enough issues were cropping up that we were not going to be able to safely take this change for Firefox 3.5, and resources were diverted elsewhere.

Process and Solution

This section is a bit technical, so feel free to skip it. The short answer is “do not block the main thread while reading from the hard drive.”

In order to not block the main thread while reading from disk we either need to make SQLite use non-blocking read system calls, or call into SQLite off of the main thread. Changing the SQLite code isn’t something we want to do, so that solution was out of the question. Luckily, we had solved a similar problem with writes and fsyncs earlier in the Firefox 3.5 development with the asynchronous Storage API.

The first implementation that we tried essentially did the same thing that the old code did. We would execute a query, but this time asynchronously, and then process the results and see if they match. There were two issues with this approach, however. The first issue was that we were filtering every history and bookmark entry on the main thread for a given search. That could be a lot of work we end up doing, and with the additional overhead of moving data across threads, the common case would see no win. The second issue was that once we selected a result in the location bar, and a search was not yet complete, there would be a hang as the main thread processed a bunch of events that Storage had posted to it containing results.

At this point, we realized we needed to do the filtering on a thread other than the main thread. After some thought, we was figured that the easiest way to do that would be to use a SQL function that we define in the WHERE clause of our autocomplete queries. This way, all the filtering is done on a background thread, and the code that runs on the main thread only deals with results we will actually use. This solution exposed some things in the Storage backend like lock contention and a few other subtle issues, but nothing major came up.

For more details on how the location bar search results are generated, see my explanation here.

If you weren’t having a problem before, chances are you won’t notice any difference at all.